如何用函式極限的定義證明,高等數學,用函式極限的定義證明。

2021-03-11 03:56:46 字數 2923 閱讀 7536

1樓:匿名使用者

限 |62616964757a686964616fe58685e5aeb931333431373836x-1/2|<1/4,有 |x-1| > 1/2-|x-1/2| > 1/2-1/4 = 1/4。任意給定ε>0,要使

x/(x-1)-(-1)| = 2|(x-1/2)/(x-1)

= 2|x-1/2|/|x-1| < 2|x-1/2|/(1/4)

= 8|x-1/2| < ε,只須 |x-2| < min。

取 δ(ε) = min > 0,則當 0< |x-1/2| < δ(ε) 時,就有|x/(x-1)-(-1) <= 8|x-1/2| < …< ε ,根據極限的定義,得證。

函式與不等式和方程存在聯絡(初等函式)。令函式值等於零,從幾何角度看,對應的自變數的值就是影象與x軸的交點的橫座標;從代數角度看,對應的自變數是方程的解。另外,把函式的表示式(無表示式的函式除外)中的「=」換成「<」或「>」,再把「y」換成其它代數式,函式就變成了不等式,可以求自變數的範圍。

函式f的圖象是平面上點的集合,其中x取定義域上所有成員的。函式圖象象以幫助理解證明一些定理。

如果x和y都是連續的線,則函式的圖象有很直觀表示注意兩個集合x和y的二元關係有兩個定義:一是三元組(x,y,g),其中g是關係的圖;二是索性以關係的圖定義。用第二個定義則函式f等於其圖象。

2樓:匿名使用者

|bai用定義證明極du限都是格式的寫法,依樣畫葫zhi蘆就是:

dao限 |版x-1/2|<1/4,有 |x-1| > 1/2-|x-1/2| > 1/2-1/4 = 1/4。任權意給定ε>0,要使

|x/(x-1)-(-1)| = 2|(x-1/2)/(x-1)|= 2|x-1/2|/|x-1| < 2|x-1/2|/(1/4)= 8|x-1/2| < ε,

只須 |x-2| < min,取 δ(ε) = min > 0,則當 0< |x-1/2| < δ(ε) 時,就有

|x/(x-1)-(-1) <= 8|x-1/2| < …< ε ,根據極限的定義,得證。

怎麼運用定義法證明一個函式的極限?

3樓:楊必宇

|用定義證明極限都是格式的寫法,依樣畫葫蘆就是:

限 |x-1/2|<1/4,有 |x-1| > 1/2-|x-1/2| > 1/2-1/4 = 1/4。任意給定ε>0,要使

|x/(x-1)-(-1)| = 2|(x-1/2)/(x-1)|= 2|x-1/2|/|x-1| < 2|x-1/2|/(1/4)= 8|x-1/2| < ε,只須 |x-2| < min。

取 δ(ε) = min > 0,則當 0< |x-1/2| < δ(ε) 時,就有|x/(x-1)-(-1) <= 8|x-1/2| < …< ε ,根據極限的定義,得證。

4樓:磨墨舞文

你的任務是對於任意給定的正數ε,找到一個n,使得n>n時,[xn-a]<ε;當然這個n的選取和ε有關,可以理解為關於ε的函式;比如你給出的例子,可以這樣證明:

對任意給定的正數ε,存在n=[1/ε]+1,當n>n時,有

|xn-a|=|1/n|<1/n<ε(因為n>n,所以1/n<1/n)

5樓:取個名太費勁

你要證明存在正整數n,也就是證明的關鍵是找到n的關於ε的表示式

比如證明當n→∞ 時,lim 1/n的極限是0 證:對任意給定的正數ε,取n=[1/ε]+1,則當n>n時,|1/n-0|<ε

主要是找n=n(ε),你再理理思路好好琢摸下。

6樓:清風逐雨

這個證明過程就是你要想辦法找出這個任意的n以及ε的值

當你找到這個n和ε 並且滿足[xn-a]<ε就可以直接說明極限為a

7樓:匿名使用者

這裡突出n的存在性和ε的任意性,亦即它與a之差可以無限小

高等數學,用函式極限的定義證明。

8樓:匿名使用者

於|(1)令f(x)=(2x+3)/3x,由於|f(x)-a|=|f(x)-2/3|=|1/x|,

任意ε>0,要證存在m>0,當|x|>m時,不等式|(1/x)-0|<ε成立。

因為這個不等式相當於1/|x|<ε即|x|>1/ε.由此可知,如果取m=1/ε,那麼當|x|>m=1/ε時,不等式|1/x-0|<ε成立,這就證明了當x->∞時,limf(x)=2/3.

(3)小弟不才,此題不會。。。

其他網友的解答:

[x-2]<δ。-δ1-δ>0

[1/(x-1)-1]=[2-x]/[x-1]<δ/(1-δ)=ε,可以設δ=ε/(1+ε)。

下面用ε-δ語言來證明x趨近2時,1/(x-1)的極限是1。

對任意小的0<ε<1,取a=ε/(1+ε)。

當[x-2]<δ=ε/(1+ε)時,ε>[x-2](1+ε)=[x-2]+[x-2]ε,[x-2]<ε(1-[x-2]),

[1/(x-1)-1]=[x-2]/[x-2+1]<[x-2]/(1-[x-2])<ε。

所以,x趨近2時,1/(x-1)的極限是1。

(4)如果這題極限為2的話,可以這樣證明:

函式在點x=1是沒有定義的,但是函式當x->1時的極限存在或不存在與它並無關係。事實上,任意ε>0,將不等式|f(x)-2|<ε約去非零因子x-1後,就化為|x-1|<ε,因此,只要取δ=ε,那麼當0<|x-1|<δ時,就有|f(x)-2|<ε.所以,原極限成立。

9樓:南宮羽幽

1. 2x+3/3x 等於 2/3 + 1/x 當x趨於無窮時,1/x 看做0

2. 直接把二代入啊~

3. 分子 x^2-1=(x+1)(x-1)分母 x^2-x = x*(x-1)

一約分: 1+1/x = 2

參考下好啦~~

大學高數函式極限問題,大學高等數學函式極限問題,求詳細解答

選a 這是關於 函式極限與數列極限關係的題目是定理 如果lim x x0 f x 存在,內xn 為函式f x 的定義容域內任一收斂與x0的數列,且滿足 xn不等於x0 n屬於z 那麼相應的函式值數列 f xn 必收斂,且lim n f xn lim x x0 f x 理解 在數列中,當n趨於 的變化...

如何證明函式極限的唯一性,證明函式極限不存在都有什麼方法

證明如下 假設存在a,b兩個數都是函式f x 當x x。的極限,且a0。總存在一個 1 0,當0 丨x x。丨 1時,使得丨f x a丨 成立。總存在一個 2 0,當0 丨x x。丨 2時,使得丨f x b丨 成立。上面的不等式可以等價變換為a 令 min,當0 丨x x。丨 時。兩個不等式同時成立...

用函式極限的定義證明limx 2 5x

對任意 0,要使 5x 2 12 5 x 2 只要 x 2 5 取 5,則當0 x 2 時,5x 2 12 成立。求極限基本方法有 1 分式中,分子分母同除以最高次,化無窮大為無窮小計算,無窮小直接以0代入 2 無窮大根式減去無窮大根式時,分子有理化 3 運用兩個特別極限 4 運用洛必達法則,但是洛...