大學高數函式極限問題,大學高等數學函式極限問題,求詳細解答

2021-03-03 21:00:17 字數 1852 閱讀 3221

1樓:森森不惜闖天涯

選a 這是關於 函式極限與數列極限關係的題目是定理 如果lim(

x→x0)f(x)存在,{內xn}為函式f(x)的定義容域內任一收斂與x0的數列,且滿足:xn不等於x0(n屬於z+),那麼相應的函式值數列{f(xn)}必收斂,且lim(n→∝)f(xn)=lim(x→x0)f(x)。理解:

在數列中,當n趨於∝的變化,導致xn變化,(注意xn不等於x0),xn變化,導致f(xn)變化這句話也可以解釋成在函式中,x趨於x0的變化,導致f(x)的變化,所以就可以得出 lim(n→∝)f(xn)=lim(x→x0)f(x)

大學高等數學函式極限問題,求詳細解答

2樓:雲羽邪影

選a這是關於 函式極限與數列極限關係的題目是定理 如果lim(x→x0)f(x)存在,{xn}為函式f(x)的定義域內任一收斂與x0的數列,且滿足:xn不等於x0(n屬於z+),那麼相應的函式值數列{f(xn)}必收斂,

且lim(n→∝)f(xn)=lim(x→x0)f(x)。

理解:在數列中,當n趨於∝的變化,導致xn變化,(注意xn不等於x0),xn變化,導致f(xn)變化

這句話也可以解釋成在函式中,x趨於x0的變化,導致f(x)的變化,所以就可以得出

lim(n→∝)f(xn)=lim(x→x0)f(x)

高數,函式的極限問題

3樓:匿名使用者

這兩道題用到了等價無窮小知識,泰勒公式,洛必達法則等,具體可以看**,可以追問。

4樓:匿名使用者

^^^4、原式=lim(x->0) e^x*[e^(tanx-x)-1]/x^3

=lim(x->0) (tanx-x)/x^3=lim(x->0) (sec^2x-1)/3x^2=lim(x->0) tan^2x/3x^2=lim(x->0) x^2/3x^2

=1/3

5、原式=lim(x->0) e^(2-2cosx)*[e^(x^2-2+2cosx)-1]/x^4

=lim(x->0) (x^2-2+2cosx)/x^4=lim(x->0) (2x-2sinx)/4x^3=lim(x->0) (x-sinx)/2x^3=lim(x->0) (1-cosx)/6x^2=lim(x->0) (x^2/2)/6x^2=1/12

求解大一高等數學多元函式的極限問題

5樓:匿名使用者

第二題,關於高等數學的多元函式的極限問版題,其求解方法是,找兩個權特殊方向趨於(0,0)時,極限存在但不相等,則多元函式的極限不存在。

第一題,求多元函式的表示式,可以先換元。

其求解過程,見上圖。

高等數學關於函式極限的問題,有一點不明白,求大神解釋

6樓:宛丘山人

||寫得過於簡略,所以你看不明白。應為:

∵lim[x-->2]x^2=4

∴對於任意給定的ε>0,存在x0=2的一個鄰域,不妨設為當0<|x-2|<1時,恆有|x^2-4|<ε

但 |x^2-4|=|x+2||x-2|<ε |x-2|<ε/|x+2|

∵ |x-2|<1 ∴-1

從而 ε/5<ε/|x+2|<ε/3

∴|x-2|<ε/5 只要取 δ=min, 就有|x^2-4|=|x+2||x-2|<ε成立

取 ε=0.001 即 δ=min=0.0002

是否能看明白?望採納!

7樓:虎天下

那個不妨設不懂,為啥要用1,其他的數結果就不一樣呀

高數極限問題,大學高數極限問題?

你第一步就做錯了,後面還能怎麼做?怎麼做都是錯的。那個指數 x怎麼就能憑空變成指數1 x呢?當然,你這題我也不會,但是我卻並不放棄,我就試它一試,就把它試出來了。解釋在圖下 第一步是為了中間一次洛必達求導做準備,放一起求太麻煩。接下來先做一個變換替換,是因為替換後我比較熟悉。接著用一次洛必達法則,分...

高數的極限問題,高等數學 極限問題?

求極限時使用等價無窮小的條件 1 被代換的量,在去極限的時候極限值為0。2 被代換的量,作為被乘或者被除的元素時可以用等價無窮小代換,但是作為加減的元素時就不可以。可以看下無窮小等價的定義,你走進了一個誤區,因為在計算時,是初等函式相加減後的總體,在x趨於零時,其極限為零,所以代換是要總體代換,並不...

高等數學函式極限問題,大學高等數學函式極限問題,求詳細解答

如滿意,請採納。謝謝 tan x sin x sin3x sinx cosx sinx x 3 sinx 1 cosx cosx x3 x x 2 2 x 3 1 2 大學高等數學函式極限問題,求詳細解答 選a這是關於 函式極限與數列極限關係的題目是定理 如果lim x x0 f x 存在,xn 為...