函式的定義域和值域怎麼求,怎麼求函式定義域和值域

2021-03-11 06:08:23 字數 5686 閱讀 7034

1樓:卜蕾邊甲

定義copy域是函式y=f(x)中的自變數x的範圍。

求函式的定義域需要從這幾個方面入手:

(1),分母不為零

(2)偶次根式的被開方數非負。

(3),對數中的真數部分大於0。

(4),指數、對數的底數大於0,且不等於1(5)。y=tanx中x≠kπ+π/2,

y=cotx中x≠kπ等等。

值域是函式y=f(x)中y的取值範圍。

常用的求值域的方法:

(1)化歸法;(2)圖象法(數形結合),

(3)函式單調性法,

(4)配方法,(5)換元法,(6)反函式法(逆求法),(7)判別式法,(8)複合函式法,(9)三角代換法,(10)基本不等式法等

2樓:半蓮富

函式的定義域如何求,數學小知識

3樓:衛振英吾未

首先得清楚,函式是由自變數,對應法則,定義域組成的,只要這3個確定了,

回函式值也救確定了

答。定義域的求法,實際上是為了函式在一定條件下成立,比如說,自變數為分母的話就不能為零,為偶次方根下,被開方數要大於零,所以,定義域第一個要滿足的就應該是自變數的客觀存在性,首先要考慮的就是那些特殊的形式,比如說分式,根式等等,這個是靠積累的;還有另外一類的,就是要保證圖形的客觀存在性,比如說橢圓和雙曲線,這兩個函式的定義域就要看圖形了,根據圖形求解,這個多半要靠記憶。所以我們求定義域的方法就是,第一,先看自變數的客觀存在性,其次,要畫圖,保證圖形的客觀存在性,最後求兩者的交集,就可以得到定義域。

至於函式值,就要看定義域和對應法則了,有了2者的約束,才可能求出正確的函式值。

此外,在解函式的題時,一定要畫圖,一定要畫圖,數行結合作為4大數學方法之一,其應用是非常廣泛的。

怎麼求函式定義域和值域

4樓:匿名使用者

都是根據自己所學過的基本知識來確定。

通常來說,函式必須有三要素:

定義域 值域 對應法則。

如果題目說的就是讓求它們,可以用:

1,分母不為零,

2,偶次方根的被開方數不小於零,

3,對數的真數大於零。

5樓:牢藉麥爾

定義域自變數

取值範圍般母

能0取數要

於零根號

面於等於0

各條件取交集行值域

定義域內

函式值範圍

用求導辦

做根據導函式確定極值點

簡單題目

用基本等式做

希望幫助

求函式定義域值域

6樓:封憶的空城

很久沒看書了,依稀記得以前做這類題目都是看書裡面的例題,找到差不多的題目,試著解出來,掌握方法的同時也要知道原理,只有以後遇到類似的就會了。

其實數學你只要把大多數公式弄懂了就很簡單。

7樓:徒手摘星星丫

真數大於零 根號下 數值要大於等於零

8樓:匿名使用者

(1)。求函式y=lgsin(cosx)的定義域;

解:如果-1≦cosx≦0,比如cosx=-m(0≦m≦1),那麼sin(cosx)=sin(-m)=-sinm<0,則

lgsin(cosx)無定義;∴ 必須00得 (x+4)²>16,故得x+4<-4或x+4>4,即x<-8或x>0..........(b)

由2kπ+π/2<-8,得k<-(1/4)-4/π=-(π+16)/(4π)≈-1.52,k∈z,故取k≦-2;

由2kπ-π/2>0,得k>1/4=0.25,因為k∈z,∴取k≧1;

即定義域為:2kπ-π/2≦x≦2kπ+π/2,其中k∈z且 k≦-2或k≧1;

(3)。①。求y=2sinxcos²x/(1+sinx)的值域;

解:∵cos²x=y(1+sinx)/(2sinx);∴0≦y(1+sinx)/(2sinx)≦1,且sinx>0;

故有0≦y(1+sinx)≦2sinx;∴0≦y≦2sinx/(1+sinx)=[2(1+sinx)-2]/(1+sinx)=2-2/(1+sinx);

當sinx=1時y獲得最大值ymax=2-1=1;當sinx=0時y獲得最小值ymin=2-2=0;

即值域y∈[0,1];

②。求 y=3cos²x-4cosx+1的值域;x∈[π/3,2π/3];

解:y=3(cosx-2/3)²-1/3;當x=π/3時y獲得最小值ymin=3(1/2-2/3)²-1/3=1/12-1/3=-1/3

當x=2π/3時y獲得最大值ymax=3(-1/2-2/3)²-1/3=25/3-1/3=8;

9樓:

3.1y=2sinφcos²φ/(1+sinφ)=2sinφ(1-sin²φ)/(1+sinφ)=2sinφ(1-sinφ)

=2(sinφ-sin²φ)= - 2(sinφ - 1/2)²+1/2 ≤1/2

當sinφ=-1時取得最小值,最小值為-4(由於原式分母不為0所以取不到)

故值域為(-4,1/2]

3.2φ∈[π/3,2π/3],cosφ∈[-1/2,1/2],令t=cosφ

y=3cos²φ-4cosφ+1=3t²-4t+1

二次函式最值取在對稱軸

t=2/3,min(y)=3*(2/3)²-4*(2/3)+1= - 1/3

t=-1/2,max(y)=3*(-1/2)²-4*(-1/2)+1=15/4

故值域為[- 1/3,15/4]

函式的定義域和值域怎麼求 20

10樓:大漠孤煙

求定義域高中常見題型:

1、分式:1/f(x),解f(x)≠0即可;

2、無理式√f(x),解f(x)≥0即可;

3、冪:x^n,x≠0;

4、對數式:lgf(x),解f(x)>0.若在底數上,解大於零且不等於1即可。

以後還會學習三角式、反三角式。

實際解題往往是以上的綜合應用。

值域的型別非常多。若你是高一學生,建議先學好課本的基本題型,等以後學習時,遇到新問題後逐漸補充的全面起來。現在全學,效果很差。

11樓:半蓮富

函式的定義域如何求,數學小知識

12樓:╰☆斷點

確定函式的定義

與有以下幾種方法:

(1)若f(x)為整式,則定義域為r;

(2)若f(x)是分式,則其定義域是使分母不為0的實數的集合;

(3)若f(x)是偶次根式,則其定義域是使根號下式子不小於0的實數的集合;

(4)若f(x)是有幾部分組成的,其定義域是使各部分都有意義的實數的集合;

(5)實際問題中,確定定義域要考慮實際意義。

求函式值域是一個比較複雜的問題,雖然給定了函式的定義域及其對應法則後,值域就完全確定了。

在求值域時,常用的方法有:

(1)觀察法

(2)配方法

(3)判別式法

(4)換元法

另外還有最值法,數形結合法等

13樓:假裝♂不愛你

定義域指的是x的變化

------

如:√2x-1,那x≥1/2

值域知的是y的變化

如:x+(1/x),那y≠0

14樓:匿名使用者

使這個函式要有意義,例如,如果是分式函式,要使分母不為零,這樣就可以列

15樓:尉恨蝶吳弼

首先得清楚,函式是由自變數,對應法則,定義域組成的,只要這3個確定了,函式值也救確定了。定義域的求法,實際上是為了函式在一定條件下成立,比如說,自變數為分母的話就不能為零,為偶次方根下,被開方數要大於零,所以,定義域第一個要滿足的就應該是自變數的客觀存在性,首先要考慮的就是那些特殊的形式,比如說分式,根式等等,這個是靠積累的;還有另外一類的,就是要保證圖形的客觀存在性,比如說橢圓和雙曲線,這兩個函式的定義域就要看圖形了,根據圖形求解,這個多半要靠記憶。所以我們求定義域的方法就是,第一,先看自變數的客觀存在性,其次,要畫圖,保證圖形的客觀存在性,最後求兩者的交集,就可以得到定義域。

至於函式值,就要看定義域和對應法則了,有了2者的約束,才可能求出正確的函式值。

此外,在解函式的題時,一定要畫圖,一定要畫圖,數行結合作為4大數學方法之一,其應用是非常廣泛的。

16樓:解梓萱逄平

定義域的求法是,觀察解析式中,自變數x是否取任意值都能使其有意義。如做分母時不可為零……對於上述式子,x取r中任何值都可以。而y的取值則分別為r,y不小於1,y不小於49/4

17樓:鄒秀榮臺裳

定義域是函式y=f(x)中的自變數x的範圍。

求函式的定義域需要從這幾個方面入手:

(1),分母不為零

(2)偶次根式的被開方數非負。

(3),對數中的真數部分大於0。

(4),指數、對數的底數大於0,且不等於1(5)。y=tanx中x≠kπ+π/2,

y=cotx中x≠kπ等等。

值域是函式y=f(x)中y的取值範圍。

常用的求值域的方法:

(1)化歸法;(2)圖象法(數形結合),

(3)函式單調性法,

(4)配方法,(5)換元法,(6)反函式法(逆求法),(7)判別式法,(8)複合函式法,(9)三角代換法,(10)基本不等式法等

18樓:伍婕池詠

定義域是指自變數的取值範圍,值域是指整個函式的取值範圍.一般要根據定義域來求出值域,或者相反.

函式的定義域和值域怎麼求?

19樓:匿名使用者

定義域是函式y=f(x)中的自變數x的範圍。

求函式的定義域需要從這幾個方面入手:

(1),分母不為零 (2)偶次根式的被開方數非負。

(3),對數中的真數部分大於0。

(4),指數、對數的底數大於0,且不等於1(5)。y=tanx中x≠kπ+π/2,

y=cotx中x≠kπ等等。

值域是函式y=f(x)中y的取值範圍。

常用的求值域的方法:

(1)化歸法;(2)圖象法(數形結合),

(3)函式單調性法,

(4)配方法,(5)換元法,(6)反函式法(逆求法),(7)判別式法,(8)複合函式法,(9)三角代換法,(10)基本不等式法等

20樓:半蓮富

函式的定義域如何求,數學小知識

21樓:匿名使用者

首先得清楚,函式是由自變數,對應法則,定義域組成的,只要這3個確定了,函式值也救確定了。定義域的求法,實際上是為了函式在一定條件下成立,比如說,自變數為分母的話就不能為零,為偶次方根下,被開方數要大於零,所以,定義域第一個要滿足的就應該是自變數的客觀存在性,首先要考慮的就是那些特殊的形式,比如說分式,根式等等,這個是靠積累的;還有另外一類的,就是要保證圖形的客觀存在性,比如說橢圓和雙曲線,這兩個函式的定義域就要看圖形了,根據圖形求解,這個多半要靠記憶。所以我們求定義域的方法就是,第一,先看自變數的客觀存在性,其次,要畫圖,保證圖形的客觀存在性,最後求兩者的交集,就可以得到定義域。

至於函式值,就要看定義域和對應法則了,有了2者的約束,才可能求出正確的函式值。

此外,在解函式的題時,一定要畫圖,一定要畫圖,數行結合作為4大數學方法之一,其應用是非常廣泛的。

函式的定義域和值域怎麼求,函式fx的定義域和值域怎麼簡單理解

求函式的定義bai域需要 從這幾個方面du入手 zhi 1 分母不為零 2 偶次根 dao式的被開方回數非負。答3 對數中的真數部分大於0。4 指數 對數的底數大於0,且不等於1 5 y tanx中x k 2,y cotx中x k 等等。值域是函式y f x 中y的取值範圍。常用的求值域的方法 1 ...

函式的定義域和值域怎麼求,函式fx的定義域和值域怎麼簡單理解

求函式的定bai義域需du 要從這幾個方面入手 zhi1 分母不 dao為零 2 偶次根式專的被開方數非負屬。3 對數中的真數部分大於0。4 指數 對數的底數大於0,且不等於1 5 y tanx中x k 2,y cotx中x k 等等。值域是函式y f x 中y的取值範圍。常用的求值域的方法 1 化...

函式y求下列函式的定義域和值域,y x平方 2x 3分之

x 2 2x 3 0 x 3 x 1 0 x1 3 x2 1 定義域是 x 2 2x 3 x 2 2x 1 4 x 1 2 4 4 4 x 2 2x 3 0 1 x 2 2x 3 1 4 x 2 2x 3 0 1 x 2 2x 3 0值域是 已知函式y 3分之1 的x的平方 2x 1次方,求定義域和...