1樓:匿名使用者
拐點在數學上指改變曲線向上或向下方向的點,直觀地說拐點是使切線穿越曲線的點(即曲線的凹凸分界點)
若該曲線圖形的函式在拐點有二階導數,則二階導數在拐點處異號(由正變負或由負變正)
現在已經得到x0處二階導數為0,
而三階導數不為零,
那麼無論三階導數是正或負,
二階導數在此點的左右領域內都會發生符號的變化,即二階導數在此點左右領域異號,
x0一定是拐點
請問為什麼二階導為0,三階導不為0就是拐點?最主要的是為什麼拐點要求三階導不為0?
2樓:house黃信
拐點的充分條件就是:
設f(x)在(a,b)內二階可導,x0∈(a,b),f"(x0)=0,若在x0兩側附近f"(x0)異號,則點(x0,f(x0))為曲線的拐點。否則(即f"(x0)保持同號),(x0,f(x0))不是拐點。
所以當函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。
3樓:匿名使用者
這句話是對的,
拐點的充分條件就是:
設f(x)在(a,b)內二階可導,x0∈(a,b),f"(x0)=0,若在x0兩側附近f"(x0)異號,則點(x0,f(x0))為曲線的拐點。否則(即f"(x0)保持同號),(x0,f(x0))不是拐點。
所以當函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。
三階導數與拐點為什麼二階導數為零,三階導數不為零
4樓:王鳳霞醫生
拐點定義:一般的,設y=f(x)在區間i上連續,x0是i的內點(除端點外的i內的點).如果曲線y=f(x)在經過點(x0,f(x0))時,曲線的凹凸性改變了,那麼就稱點(x0,f(x0))為這曲線的拐點
這樣設f(x)在(a,b)內二階可導,x0∈(a,b),則f『』(x0)=0,若在x0兩側附近f『』(x0)異號,則點(x0,f(x0))為曲線的拐點.否則(即f『』(x0)保持同號,(x0,f(x0))不是拐點.
三階導數不為零則2階導數的正負在該店附近改變,進而凹凸性改變,為拐點
在xo處一階二階導數均為0,三階導數不為0,問xo是否是極值點和拐點的橫座標
5樓:有點傻
結論如下: xo點不是極值點,而是拐點!判斷方式如下:
f(x)在xo鄰域內的二階導數為:f''(xo)=lim[f'(x)-f'(xo)]/(x-xo)=lim f'(x)/(x-xo) x→xo 在xo點一階導數為0的情況下,假如xo點的二階導數大於0,根據極限的保號性,在xo的鄰域內,肯定存在f'(x)/(x-xo) >0(當x在xo右側,一階導數大於0,單調遞增;左側,一階導數小於0,單調遞減),顯然此時xo點為極小值點;當xo點的二階導數小於0,肯定存在xo鄰域: f'(x)/(x-xo) (x-xo) >0,可得出xo右側二階導數大於0為凹,xo左側二階導數小於0為凸,故xo為拐點;當三階導數小於0,同理也能得出x0為拐點的結論。
只有在三階導數=0時,才能說xo非拐點。 以上證明僅供參考,如有疑問可繼續追問!
函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。
6樓:匿名使用者
這句話是對的,
拐點的充分條件就是:
設f(x)在(a,b)內二階可導,x0∈(a,b),f"(x0)=0,若在x0兩側附近f"(x0)異號,則點(x0,f(x0))為曲線的拐點。否則(即f"(x0)保持同號),(x0,f(x0))不是拐點。
所以當函式影象上的某點使函式的二階導數為零,且三階導數不為零時,這點即為函式的拐點。
二階導數為0,三階導數不為0,為什麼一定是拐點
7樓:匿名使用者
用定義可以證的,利用保號性可以證,分左右領域,說明二階導數左右異號。。。也可以用性質,2個方法,你看著辦吧,如圖所示。
設y=f(x)在x=x0的鄰域內具有三階連續導數,三階導數不等於0。
8樓:
(x0,f(x0))一定是拐點。
f'''(x0)=lim f''(x)/(x-x0)。
假設f'''(x0)>0,根據保號性,在x0的某去心鄰域內,f''(x)/(x-x0)>0,進而在x0的左側f''(x)<0,右側f''(x)>0,所以(x0,f(x0))是拐點。
假設f'''(x0)<0,根據保號性,在x0的某去心鄰域內,f''(x)/(x-x0)<0,進而在x0的左側f''(x)>0,右側f''(x)<0,所以(x0,f(x0))是拐點。
如圖這兩個函式在0處的二階導數為0,三階導數為正,但是能說它們在0處是拐點嗎?
9樓:baby愛上你的假
可以,拐點有一個判別法,是如果某一點函式的前n-1階導都為0,n階導不為0。當n為奇數時,則該點為拐點。
三階導數與拐點的關係為什麼二階導數為零,三階導數
10樓:玲玲幽魂
這個是二階導數為0的必要條件.
幾何意義就是該點左右兩端的極限不同(趨向於a+和a-),所以是個拐點~
如果要具體的,看看數學分析的書吧~
另:意義如下:
(1)斜線斜率變化的速度
(2)函式的凹凸性.
關於你的補充:
二階導數是比較理論的、比較抽象的一個量,它不像一階導數那樣有明顯的幾何意義,因為它表示的是一階導數的變化率.在圖形上,它主要表現函式的凹凸性,直觀的說,函式是向上突起的,還是向下突起的.
應用:如果一個函式f(x)在某個區間i上有f''(x)(即二階導數)>0恆成立,那麼對於區間i上的任意x,y,總有:
f(x)+f(y)≥2f[(x+y)/2],如果總有f''(x)0恆成立,那麼在區間i上f(x)的圖象上的任意兩點連出的一條線段,這兩點之間的函式圖象都在該線段的下方,反之在該線段的上方.
f x 在x0點具有二階導數,能否說明f x 在x0的領域內二階可導
考慮f x 0 x t 2arctan w t dt,抄其中w是weierstrass函式,處處連續 因此t 2arctan w t 可積 但處處不可導。則f x x 2arctan w x f 0 lim x 0 x 2arctan w x 0 x 0 lim x 0 xarctan w x 0 ...
用二階導數求極值當二階導數在某點的值為0,怎麼繼續
還要繼續判斷一階導數是不是為零,不為零則不是極值點,為零的話在判斷二階倒數在緊挨此點左右的正負是否相同且不能為零 為零的話會使一階繼續為零 相同則是極值點.某點的一階導數不為零,二階導數為零,存在極值嗎?只要一階導數不等於 0 就不是極值點,無論二階導數是否為 0 也有可能是在一階導不存在的點處取得...
二階導數0,為什麼可以推出一階導數的大小
y的二階導數大於0不一定能得到y的一階導數大於0的結論。y的二階導數大於0只能說明y的一階導數函式是個遞增函式,那麼對於x 0,有y x y 0 如果恰好有y 0 0,才能得到你上面的結論。二階導數大於零,就一定說明一階導數大於零嗎?或者說,一階導數大於零就一定說明二階導數大於零嗎?二階導數大於0,...