1樓:假面
在這一點存在連
抄續的偏
襲導數。
先用定義求出該點的偏導數值c,再用求導公式求出不在該點時的偏導數fx(x,y),最後求fx(,x,y)當(x,y)趨於該點時的極限,如果limfx(x,y)=c,即偏導數連續,否則不連續。
2樓:匿名使用者
在這一點存在連續的偏導數
函式z=f(x,y)在點(x0,y0)處連續是它在該點偏導數存在的什麼條件
3樓:匿名使用者
選a必要抄非充分條件
如果函式
襲z在某一點bai(x0,y0)處不連續,那麼它du
在這一點的偏導數是不zhi存在dao的。而且,即使在某一點連續,也不能保證它在該點一定存在偏導數,所以選a。
x方向的偏導
設有二元函式 z=f(x,y) ,點(x0,y0)是其定義域d 內一點。把 y 固定在 y0而讓 x 在 x0 有增量 △x ,相應地函式 z=f(x,y) 有增量(稱為對 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 與 △x 之比當 △x→0 時的極限存在,那麼此極限值稱為函式 z=f(x,y) 在 (x0,y0)處對 x 的偏導數,記作 f'x(x0,y0)或函式 z=f(x,y) 在(x0,y0)處對 x 的偏導數,實際上就是把 y 固定在 y0看成常數後,一元函式z=f(x,y0)在 x0處的導數。
y方向的偏導
同樣,把 x 固定在 x0,讓 y 有增量 △y ,如果極限存在那麼此極限稱為函式 z=(x,y) 在 (x0,y0)處對 y 的偏導數。記作f'y(x0,y0)。
4樓:匿名使用者
選a必要非充分條件
如果函式z在某一點(x0,y0)處不連續,那麼它在這一點的偏導數是不存在的。而且,即使在某一點連續,也不能保證它在該點一定存在偏導數,所以選a。
5樓:
偏導存在未必連續,比如偏x存在,那就關於x連續(根據一元函式的性質),但是整個不連續;連續也未必可導,偏導當然也未必存在。所以選d
函式f(x,y)在點(x0,y0)處偏導數存在是f(x,y)在該點可微的( )a.充分非必要條件b.必要非充
6樓:啊33椞
偏導數源存在,並不一定保證函式可微.如
f(x,y)=xyx
+y,(x,y)≠(0,0)
0,(x,y)=(0,0)
,由定義可以求出f′x(0,0)=f′y(0,0)=0,但lim
x→0y→0
f(x,y)不存在,即函式在原點不連續
因而也就不可微分了
即偏導數存在不能推出可微
由可微,得△f=f(x+△x,y+△y)-f(x,y)=a△x+b△y+o(ρ)中,令△y=0
則有f(x+△x,y)-f(x,y)=a△x+o(|△x|),兩端處於△x,並令△x→0,得
lim△x→0
f(x+△x,y)?f(x,y)
△x=f
x(x,y),同理fy(x,y)也存在.
即可微?偏導數存在
故選:b.
二元函式z=f(x,y)在點(x0,y0)處偏導數存在是f(x,y)在該點連續的什麼條件?
7樓:匿名使用者
偏導存在未必連續,比如偏x存在,那就關於x連續(根據一元函式的性質),但是整個不連續;連續也未必可導,偏導當然也未必存在。
在xoy平面內,當動點由p(x0,y0)沿不同方向變化時,函式f(x,y)的變化快慢一般說來是不同的,因此就需要研究f(x,y)在(x0,y0)點處沿不同方向的變化率。偏導數表示固定面上一點的切線斜率。
偏導數是對一個變數求導,另一個變數當做數,對x求偏導的話y就看作一個數,描述的是x方向上的變化率;對y求偏導的話x就看作一個數,描述的是y方向上的變化率。
偏導數幾何意義:對x求偏導是曲面z=f(x,y)在x方向上的切線;對y求偏導是曲面z=f(x,y)在x方向上的切線。
全導數本質上就是一元函式的導數。他是針對複合函式而言的定義。一元函式的情況下,導數就是函式的變化率。
8樓:g笑九吖
二元函式z=f(x,y)在點(x0,y0)處偏導數存在是f(x,y)在該點連續的必要條件而非充分條件。
一個多變數的函式的偏導數,就是它關於其中一個變數的導數而保持其他變數恆定(相對於全導數,在其中所有變數都允許變化),偏導數在向量分析和微分幾何中是很有用的。
函式z=f在點處具有偏導數是它在該點存在全微分的什麼條件
9樓:匿名使用者
這裡應該是
必要非充分條件
存在全微分,
那麼在該點是一定具有偏導數的
而只有當偏導數連續時,
全微分才一定存在
設二元函式f(x,y)在點(x0,y0)處滿足fx(x0,y0)0,且fy(x0,y0)0,則有
二元函式f x,復y 在點 制x0,baiy0 處滿足fx x0,y0 0,且fy dux0,y0 0極值點必定是駐點 zhi駐點不dao一定是極值點。如果函式f x,y 在區域d內的每一點處都連續,則稱函式f x,y 在d內連續。一切二元初等函式在其定義區域內是連續的。在有界閉區域d上的二元連續函...
處的連續是函式在點x0,y0處可微分的什麼條件
必要條件,如果在 x0,y0 點連續,並且在這點的左導數等於右導數,這時在 x0,y0 這點才是可導的 也就是可微分 而如果是已知可微分的話,那必定能推匯出連續.函式f x,y 在點 x0,y0 處全微分存在的條件是什麼?在這一點存在連 抄續的偏 襲導數。先用定義求出該點的偏導數值c,再用求導公式求...
二元函式fx,y在點x0,y0處兩個偏導數xx
既不充分也不必要 如f x,y xy x y 不在原點,在原點時令其等於零。若二元函式z f x,y 在點 x0,y0 的兩個偏導數f x x0,y0 f y x0,y0 都存在,則z f x,y 設f x,y xyx y,x,y 0,0 0,x,y 0,0 由定義可以求出f x 0,0 f y 0...