利用二重積分的幾何意義計算二重積分a Sqrt x 2 y 2 )d,D x 2 y 2 a 2,a》

2021-03-20 05:14:21 字數 3181 閱讀 6702

1樓:登興有譙水

由二重積分的幾何意義知所求積分是以d為底面,a-√(x^2+y^2)為頂的立體的體積

z=a-√(x^2+y^2)表示的是以(0,0,a)為頂點的錐面

所以原積分=1/3 πa^3

2樓:尋振華孟裳

分成兩部分計算:∫∫b

dσ表示一個圓柱的體積,圓柱的底圓為x²+y²≤a²,高為b,因此體積為:πa²b

∫∫√(x²+y²)

dσ表示一個圓柱中挖去一個圓錐的體積,圓錐高為a,因此這部分體積為:(2/3)πa³

最終本題結果為:πa²b-(2/3)πa³【數學之美】團隊為你解答,如有疑問請追問,如果解決問題請採納。

利用二重積分的幾何意義計算二重積分。 ∫∫(sqrt(1-x^2-y^2))dσ,d:x^2+y^2≤1

3樓:暗香沁人

幾何意義表示一個單位球的上半球的體積,

單位球的體積是4π/3,

上半球的體積=2π/3

4樓:匿名使用者

這個的幾何意義就是一個單位球的上半球的體積,單位球的體積是4π/3,當然就是2π/3了

5樓:匿名使用者

哦 原來是這樣 三四樓的是對的,d表示底面積,f(x)表示上曲面x^2+y^2+z2=1表示一個球

6樓:流星譽

∫∫(sqrt(1-x^2-y^2))dσ=2

7樓:七字詠歎調

這區域應該是個單位圓。把圖畫出來,當然可以直接得。

這種題應該是比較基礎的了

利用二重積分的幾何意義計算二重積分。

8樓:抹煞陽光

上式的幾何意義是球x^2+y^2+z^2=1的上半球的體積(0<=z<=1)

球的體積是(4×pi×r^3)/3

積分值就是體積的一半(4×pi×r^3)/6

怎麼用二重積分的幾何意義確定二重積分∫∫(a^2-x^2-y^2)^0.5 dxdy,其中d:x^2+y^2<=a^2,x>=0,y>=0..

9樓:匿名使用者

^被積函式z=√[a²-x²-y²],積x²+y²+z²=a²的上半個球面。

注意d:x^2+y^2<=a^2,x>=0,y>=0∫∫(a^2-x^2-y^2)^0.5 dxdy=球體在第一卦限的體積=(1/8)(4/3)πa³

=πa³/6

二重積分的幾何意義是:d上曲頂(z=f(x,y))柱體的體積。

計算二重積分.∫∫根下{(1-x^2-y^2)/(1+x^2+y^2)}dσ,d:x^2+y^2<=ax的二重積分 15

10樓:浮生梔

化為極座標,原式=∫[0->π/2]dθ∫[0->1] [(1-r²)/(1+r²)]^(1/2) rdr

=π/2∫[0->1] (1/2)[(1-r²)/(1+r²)]^(1/2) dr²

第二類換元法

令t=[(1-r²)/(1+r²)]^(1/2),解出r²=(1-t²)/(t²+1),dr²/dt=[(1-t²)/(t²+1)]'=-4t/(t²+1)²

r²∈[0,1] -> t∈[1,0]

=π/4∫[1->0] -4t²/(t²+1)²dt

=π∫[0->1] t²/(t²+1)²dt

=π∫[0->1] (t²+1)/(t²+1)²dt - ∫[0->1] 1/(t²+1)²dt

=π [(arctan1-arctan0) - (t/(1+t^2)+arctant)/2 | (0->1) ]

=π [π/4-(1/2+π/4-0-0)/2]

=π [π/8 - 1/4]

=π*(π-2)/8

其中用到了:

∫1/(1+t^2)^2dt=(t/(1+t^2)+arctant)/2+c

擴充套件資料

積分是微積分學與數學分析裡的一個核心概念。通常分為定積分和不定積分兩種。直觀地說,對於一個給定的正實值函式,在一個實數區間上的定積分可以理解為在座標平面上,由曲線、直線以及軸圍成的曲邊梯形的面積值(一種確定的實數值)。

積分的一個嚴格的數學定義由波恩哈德·黎曼給出(「黎曼積分」)。黎曼的定義運用了極限的概念,把曲邊梯形設想為一系列矩形組合的極限。從十九世紀起,更高階的積分定義逐漸出現,有了對各種積分域上的各種型別的函式的積分。

比如說,路徑積分是多元函式的積分,積分的區間不再是一條線段(區間[a,b]),而是一條平面上或空間中的曲線段;在面積積分中,曲線被三維空間中的一個曲面代替。對微分形式的積分是微分幾何中的基本概念。

由二重積分的幾何意義 ∫∫根號下(4-x^2-y^2)dxdy= ? 其中∑是x^2+y^2<=4

11樓:援手

二重積分∫∫f(x,y)dxdy的幾何意義是以積分割槽域d為底,以曲面z=f(x,y)為頂的曲頂柱體的體積。本題中被積函式f(x,y)=z=(4-x^2-y^2)^(1/2),整理得x^2+y^2+z^2=4(z>0),也就是球心在原點,半徑為2的上半球面,而積分割槽域d為xoy平面上圓心在原點,半徑為2的圓。因此由z=f(x,y)和d確定的曲頂柱體就是上半球,其體積=(1/2)(4π/3)(2^3)=16π/3,也就是此積分的結果。

12樓:匿名使用者

用幾何意義,

這個二重積分就是,

以上半球面√4-xx-yy為頂的上半球體的體積,直接用球的體積公式除以2即得結果。

由二重積分幾何意義,∫∫√(1-x^2-y^2)dxdy= ,其中d={(x,y)| x^2+y^2 <=1, x,y>=0}

13樓:援手

1,在d上的二重積分∫∫f(x,y)dxdy的幾何意義是,以d為底,以曲面z=f(x,y)為頂的曲頂柱體的體積,本題中根據被積函式和積分割槽域,可以看出這個積分表示球體x^2+y^2+z^2=1在第一卦限內部分的體積,因此積分=π/6。

2,由於兩個積分的積分割槽域相同,只要比較被積函式在d上的大小即可,由e≤x^2+y^2≤2e可知ln(x^2+y^2)≥1,因此in(x^2+y^2)≤∫[in(x^2+y^2)]^3,即∫∫in(x^2+y^2)dxdy≤∫∫[in(x^2+y^2)]^3dxdy。

求二重積分,利用幾何意義如何用二重積分的幾何意義求二重積分?

拋物面abc的面積s 曲頂柱體的體積v 4 3 2 8 3 事實上,利用幾何意義求二重積分的值就是求曲頂 柱體的體積,本題中的曲頂柱體底面是矩形,曲頂是柱面z 1 x 2,它的母線平行於y軸,就上面蓋了一塊瓦當,想象一下超市賣的長麵包哈哈哈。現在換一個角度看這個立體,把xoz平面上的一塊側面看成是底...

利用極座標計算二重積分sinxy

使用極座標來計算 令x rcos y rsin x 2 y 2 r 2 則sin x 2 y 2 sinr,而 2 x 2 y 2 4 2,即內 2 r 2 4 2,所以r的範容圍是 2 故原積分 sinr r dr d 上限2 下限0 d 上限2 下限 sinr r dr 顯然 上限2 下限0 d...

高等數學 二重積分和三重積分的幾何意義分別是什麼??他們有什麼區別?在特殊的情況下是不是有可能相等

三重積分當被積函式是1時,求的質量跟體積值是一樣的 二重積分的幾何背景就是曲頂柱體的體積。二重積分和三重積分的幾何意義,物理意義分別是什麼?定積分的幾何意義是曲邊梯形的有向面積,物理意義是變速直線運動的路程或變力所做的功。二重積分的幾何意義是曲頂柱體的有向體積,物理意義是加在平面面積上壓力 壓強可變...