1樓:匿名使用者
1.求極限時什麼copy時候可以分開求?
分開後要保證各個部分有極限。
2.等價無窮小代換不能一般不能在有加減時進行,但這並不是絕對的,下面的結論在做代換時十分有用:
(1)兩個無窮小量相減時,如果它們不是等價無窮小量,可以分別用它們的等價無窮小量來代換.(2)類似地,如果兩個無窮小量相加時,則它們相比的極限不等於-1時,才能分別用它們的等價無窮小量來代換.
這兩個結論是可以證明的,如需要,請告訴郵箱,並有應用例子說明。
2樓:匿名使用者
以下幾個前提:
1. 函式必須連續,不連續的函式永遠不能帶入
2. 直接帶入會導致一個誤差,這個誤差必須小到可以忽略(這點無法給一個直觀的準則,基本上是需要不同題目不同對待的)
高數極限 什麼時候可以用等價無窮小相互替換?
3樓:匿名使用者
首先函式值應趨於零,另外兩個無窮小相乘除時可以同時用等價代換,相加減時只有用後結果不為0時才能同時用
求極限什麼時候可以用等價無窮小
4樓:匿名使用者
當為乘積時可用等價無窮小代換求極限
但是當加減時就需要先計算
舉個例子
(sinx-tanx)/x^3 x趨近於0的極限sinx=x+o1(x) tanx=o2(x)sinx-tanx=o1(x)-o2(x)=o(x)[o1(x)o2(x)o(x)都是x高階無窮小]因為二者相減把已知的部分都抵消掉了
剩下的部分是o(x)是一個未知階數的無窮小(只知道它比x高階) 可能是x^2的等價無窮小 這是極限為∞ 也可能是x^3的等價無窮小 這時極限為常數 如果是x^4的等價無窮小 那麼極限就是0了
所以當加減變換把已知部分抵消掉的時候不能用等價無窮小代換否則就可以
比如說sinx+tanx=2x+o(x) 就是0了還有比較特殊的情況 比如說sinx-tanx/x x趨近於0的極限這時等價無窮小代換可得o(x)/x 因為o(x)是x的高階無窮小 所以極限為零
總的來說就是不能肯定的時候 代換時加上高階無窮小余項
5樓:匿名使用者
熟悉下泰勒公式...有泰勒公式做指導什麼時候都能用等價無窮小!泰勒公式就是在一般等價無窮小的基礎上加上了高階無窮小項..所以用泰勒公式無論什麼時候都不會錯..
什麼時候求極限可以用等價無窮小替換,是不是隻有以下三種情況?另外第三種情況是什麼意思?謝啦! 10
6樓:nice千年殺
是啊。x趨於0時候,求極限,可以運用等價無窮小來求解。x趨於0時候,求f(x²/sin²x)也可以使用等價無窮小求解。x²和sin²x是等價無窮小,所以可以求得函式的極限。
等價無窮小:高數中常用於求x趨於0時候極限,當然,x趨於無窮的時候也可求,轉化成倒數即成為等價無窮小。
拓展資料常用等價無窮小:x趨於0時,x和sinx是等價無窮小;sinx和tanx是等價無窮小;tanx和ln(1+x)是等價無窮小;ln(1+x)和e^x-1是等價無窮小;e^x-1和arcsinx、arctanx是等價無窮小;等價無窮小,可以用乘法,但是不能互相加減,否則誤差會增大到不可接受的地步。
7樓:又吃成長快樂哦
樓主求採納~
當為乘積時可用等價無窮小代換求極
限但是當加減時就需要先計算
舉個例子
(sinx-tanx)/x^3 x趨近於0的極限sinx=x+o1(x) tanx=o2(x)sinx-tanx=o1(x)-o2(x)=o(x)[o1(x)o2(x)o(x)都是x高階無窮小]因為二者相減把已知的部分都抵消掉了 剩下的部分是o(x)是一個未知階數的無窮小(只知道它比x高階) 可能是x^2的等價無窮小 這是極限為∞ 也可能是x^3的等價無窮小 這時極限為常數 如果是x^4的等價無窮小 那麼極限就是0了
所以當加減變換把已知部分抵消掉的時候不能用等價無窮小代換否則就可以
比如說sinx+tanx=2x+o(x) 就是0了還有比較特殊的情況 比如說sinx-tanx/x x趨近於0的極限這時等價無窮小代換可得o(x)/x 因為o(x)是x的高階無窮小 所以極限為零
總的來說就是不能肯定的時候 代換時加上高階無窮小余項
8樓:暮雪
這個,其實第二個條件不絕對,加減也行的,我刷到過好多都是加減做出來的題。我總結的規律是凡是加減轉換後等於0的基本不行,其他可以
9樓:熱心網友
什麼時候求極限可以用等價無窮小替代呢?是有三種情況的,你說的很對
10樓:小威
嗯,如果你想求極限,可以用等價無窮小替換嗯,你想問是不是有以下三種?我覺得你回答的都很正確,相信你自己的答案,只能覺得
11樓:遺忘的果果
答: 用等價無窮小代換的大前提:用等價無窮小代換的量必須它本身就是無窮小.
原則:等價無窮小的代換,一定是要在乘除的情況下.對於加減的代換,必須是先進行極限的四則運算後,才可以考慮
12樓:匿名使用者
必須都滿足,(3)就是字面意思。
另外你可以選擇完全不記等價無窮小而直接使用泰勒公式。
13樓:匿名使用者
加減拆分時,必須拆下來的每一項都分別有極限才行,否則不能拆
14樓:孫唾唾
1. a/b型,如果分母是 x 的 k 次冪,則把分子到 k 次冪;如果分子是 x 的 k 次冪,則把分母到 k 次冪。
2. a-b型,將a、b分別到係數不相等的 x 的最低次冪為止。
15樓:匿名使用者
極限是永遠無窮大的,他沒有什麼可以代替,要不然他怎麼會叫極限呢?也沒有什麼三種情況,只有一種情況就是永遠大。
16樓:匿名使用者
3的意思是指 這個x可以拓展成其他初等函式 只要它是無窮小的 也就是滿足(1) 如果你聽過張宇老師的課就知道什麼意思了
17樓:匿名使用者
這些都不是問題問題的存在都能解決的決絕,只要能解決的都不是問題。
18樓:鞏東園
唉,這題都忘了,高中的時候會,現在都不上學十年了
請問求極限時什麼時候x可以直接帶入什麼時候不能呢
分子分母均為0時,這時成為0比0型的極限,極限有可能存在,但是這種形式你無法得出極限到底是多少,所以要變形分解因式,把式子變為能求極限的形式,這樣才能求出極限到底是多少。請問求極限時什麼時候可以把x 某數這個代入式子中?把x x0直接代入式子中的某一部分 等效為你把原來的極限拆成了某幾部分的和 差 ...
高數求極限的題目什麼時候能把極限直接代入,什麼時候不能直接代入
代入可以計算時,就能代,不能計算就不可以代,常見的不能直接代的型別有 0 0 0 1的無窮次方 無窮的0次方 為啥這題高數不能用第一個重要極限,反而直接把0代入了,搞不清楚什麼時候可以代入,什麼時候不可以代入?很容易,第二個用重要極限,重要極限sinx x應用條件是x趨近於0,這樣它整體極限趨近於1...
求極限時什麼時候答案為正,什麼時候為負
果算出來是具襲體的數bai,就是具體的數,是正du就是正,是負就zhi是負 2 但是dao,很多的極限計算題,是不可以直接代入計算的,這些就構成了不定式,不定式有各種各樣的計算方法,在運用了特殊方法化簡後,最常見的就是 x 1,x 從左側趨近於1,就是0 倒數就是負無窮大 x 1,x 從右側趨近於1...