已知橢圓C x2 b2 1 ab0 的離心率

2021-04-21 04:30:30 字數 5193 閱讀 6757

1樓:匿名使用者

解:由題

bai意,雙曲線x2-y2=1的漸近線方

du程為zhiy=±x

∵以這四個交點dao為頂點的四邊形的面版積為16,故邊長權為4,∴(2,2)在橢圓c:x^2/a^2+y^2/b^2=1(a>b>0)上

∴4/a^2+4/b^2=1

∵e=√3/2

∴(a^2−b^2)/a^2=3/4

∴a^2=4b^2

∴a^2=20,b^2=5

∴橢圓方程為:

x^2/20+y^2/5=1

高考數學複習:已知橢圓g:x2/a2+y2/b2=1(a>b>0)的離心率為√3/2,過其右焦點與長軸垂直 10

2樓:戒貪隨緣

|(ⅰ)c/a=√3/2且2b^2/a=1且a^2=b^2+c^2解得a=2,b=1

所以橢圓方程x^2/4+y^2=1

(ⅱ)設m(2m,n) (n>0,-1

則(2m)^2/4+n^2=1 即m^2+n^2=1 (1)am方程:nx-2(m+1)y+2n=0,得c(4,3n/(1+m))

bm方程:nx-2(m-1)y-2n=0,得d(4,-n/(1-m))

|cd|=|(3n/(1+m))-(-n/(1-m))|=2n|(2-m)/(1-m^2)|=2n(2-m)/n^2=2(2-m)/n=4

m=2-2n (2)

由(1)(2)解得 m=0,n=1或m=4/5,n=3/5所以m(0,1)或(8/5,3/5)

(ⅲ)s1=(1/2)|ab|*n=2n

由(ⅱ)|cd|=2(2-m)/n

s2=(1/2)|cd|*(4-2m)=2(2-m)^2/ns1/s2=n^2/(2-m)^2=((n-0)/(m-2))^2設k=(n-0)/(m-2)

k就是單位圓在x軸上方部分上任一點與(2,0)連線而成直線的斜率.

可求得-√3/3≤k<0

s1/s2=k^2

所以 s1/s2的取值範圍是(0,1/3]希望能幫到你!

3樓:慶傑高歌

(1)焦點弦=2b^2/a=1,e=c/a=√3/2解得a=2,b=1

方程x^2/4+y^2=1

這個焦點弦公式記住,大大的好處。

(2)由題意設d(4,d),c(4,4+d)a(-2,0),b(2,0)

ac方程:y=(4+d)/6(x+2)

bd方程:y=d/2(x-2)

解得m((4d+4)/(d-2),d(d+4)/(d-2))代入橢圓方程解得m(8/5,3/5)

也可設m(m,n)

ac方程y=n(x+2)/(m+2),yc=6n/(m+2)bd方程y=n(x-2)/(m-2),yd=2n/(m-2)6n/(m+2)-2n/(m-2)=4

m=4-4n

代入橢圓方程解得m=8/5,n=3/5

m(8/5,3/5)

(3)這符號太難打了。

已知橢圓e:x2/a2+y2/b2=1(a>b>0)的離心率為1/2 且經過p(1,3/2) 40

4樓:戒貪隨緣

原題是:已知橢圓e:x^2/a^2+y^2/b^2=1(a>b>0)的離心率為1/2,且經過p(1,3/2),直線l:

y=kx+m不經過該點p,與橢圓交與ab兩點, 求△abo的面積最大值.

由已知a=2c且b=(√3)c且(1/a^2)+(9/(2b)^2)=1

解得a=2,b=(√3)

橢圓方程:x^2/4+y^2/3=1

設a(x1,kx1+m),b(x2,kx2+m)

向量oa=(x1,kx1+m),向量ob=(x2,kx2+m)

由向量法求三角形面積公式得△oab的面積

s=(1/2)|x1·(kx2+m)-x2·(kx1+m)|=(1/2)|m||x1-x2|

由x^2/4+y^23=1且y=kx+m消去y並化簡得

(4k^2+3)x^2+8kmx+4m^2-12=0

當△=(8km)^2-4(4k^2+3)(4m^2-12)=48((4k^2+3)-m^2)>0時

設t=m^2/(4k^2+3),則m^2=(4k^2+3)t,且0≤t<1

|m||x1-x2|=|m|(√△)/(4k^2+3)=(4√3)(√(m^2)(4k^2+3)-m^4)/(4k^2+3)

=(4√3)(√(4k^2+3)^2·t-(4k^2+3)^2·t^2)/(4k^2+3)

=(4√3)√(t(1-t))

≤(4√3)(t+(1-t)))/2 (t=1/2時取「=」)

=2√3

即△oab的面積s≤(1/2)·(2√3)=√3

當t=m^2/(4k^2+3)=1/2 即2m^2=4k^2+3 取「=」

因直線l不過(1,3/2),滿足2m^2=4k^2+3的(m,k)應將m+k=3/2的值除外.

所以△abo面積的最大值是√3。

希望能幫到你!

已知橢圓c:x2/a2+y2/b2=1(a>b>0)的離心率為根號3分之2,以原點為圓心,橢圓的短半軸為半徑的圓

5樓:匿名使用者

已知橢圓c:x2/a2+y2/b2=1(a>b>0)的離心率為【2分之根號3】,

以原點為圓心,橢圓的短半軸為半徑的圓與直線x-y+根號2=0相切【1橢圓】

c/a=√3/2

a=4c/3

b^2=a^2-c^2=7c^2/9

c=3k, a=4k, b=√7k

x^2/16+y^2/7=k^2

【2直線】

y=x-√2

【3圓】

x^2+y^2=b^2=7k^2

【4切點】

x=-y=√14k/2

代入直線方程

√14k=√2

k=√7

【】橢圓方程

x^2/112+y^2/49=1

在平面直角座標系xoy中,已知橢圓c:x2/a2+y2/b2=1(a>b>0),過點p(1,3/2

6樓:匿名使用者

^(1) 橢圓

e = 1/2, 則 a = 2c, a^2 = 4c^2 = 4(a^2-b^2),

得 3a^2 = 4b^2

橢圓過點 p(1,3/2), 則 1/a^2 + 9/(4b^2) = 1,

於是 1/a^2 + 9/(3a^2) = 1, 得 a = 2, b = √3,

橢圓方程撒是 x^2/4 + y^2/3 = 1.

(2) 橢圓c的右焦點 f(1, 0), 設直線 l 斜率為 k,

則直線 l方程是 y = k(x-1), 代入 x^2/4 + y^2/3 = 1,

得 3x^2+4k^(x-1)^2 = 12,

即 (3+4k^2)x^2-8k^2x+(4k^2-12) = 0

解得 x = [4k^2±6√(1+k^2)]/(3+4k^2),

y = k(x-1) = k[-3±6√(1+k^2)]/(3+4k^2)

ap 斜率 /

bp 斜率 /

太複雜了

7樓:半個_救世主

第一問,根據a>b>0判斷橢圓在座標軸上的大致形狀,然後根據橢圓的離心率公式和過點p(1,3/2)代入,可以得到一個一元二次方程組,解出a 和b的值。

第二問,根據第一問判斷出來的橢圓形狀,作圖,設c點座標為(x,y)將x代入橢圓,把y用x表示,面積t用一個和x相關的公式表達出來,之後經過代數變換,大概會用到均值不等式,然後求出最大值。

而且你那裡是平方,那裡是2,平方用x^2

8樓:若即若離

我很想為你解答,因為一遇到橢圓,雙曲線,我就很敢興趣,無奈上了大學以後,高中的知識全都還給老師了。

已知橢圓c:x2/a2+y2/b2=1(a>b>0)的離心率為√2/2,並且直線y=x-b在y軸上的截距為-1(1)求橢圓的方程

9樓:drar_迪麗熱巴

(1)b=1,有a²=1+c²,c/a=√2/2,解得a=√2,∴橢圓方程為x²/2+y²=1

(2)若存在這樣的

定點,那麼當l旋轉到與y軸重合時,依然滿足at⊥bt

此時的a(0,1),b(0,-1),t在以ab為直徑的圓x²+y²=1上

同理,當l旋轉到與x軸平行時,滿足at⊥bt

令y=-1/3,解得x1=-4/3,x2=4/3,所以a(-4/3,-1/3),b(4/3,-1/3)

t在ab為直徑的圓x²+(y+1/3)²=16/9上

聯立解得t的座標為(0,1)∴ta→=(x1,y1-1),tb→=(x2,y2-1)

設直線l:y=kx-1/3,聯立橢圓方程得(2k²+1)x²-4kx/3-16/9=0

x1+x2=4k/3(2k²+1),x1x2=-16/9(2k²+1)

∴y1+y2=kx1-1/3+kx2-1/3=-2/3(2k²+1),y1y2=(kx1-1/3)(kx2-1/3)=(1-18k²)/9(2k²+1)

ta→*tb→=x1x2+(y1-1)(y2-1)=x1x2+y1y2-(y1+y2)+1=0

即無論k取何值,都有ta→*tb→=0

∴存在t(0,1)

橢圓的標準方程共分兩種情況:

當焦點在x軸時,橢圓的標準方程是:x^2/a^2+y^2/b^2=1,(a>b>0);

當焦點在y軸時,橢圓的標準方程是:y^2/a^2+x^2/b^2=1,(a>b>0);

其中a^2-c^2=b^2

推導:pf1+pf2>f1f2(p為橢圓上的點 f為焦點)

幾何性質

x,y的範圍

當焦點在x軸時 -a≤x≤a,-b≤y≤b

當焦點在y軸時 -b≤x≤b,-a≤y≤a

對稱性不論焦點在x軸還是y軸,橢圓始終關於x/y/原點對稱。

頂點:焦點在x軸時:長軸頂點:(-a,0),(a,0)

短軸頂點:(0,b),(0,-b)

焦點在y軸時:長軸頂點:(0,-a),(0,a)

短軸頂點:(b,0),(-b,0)

注意長短軸分別代表哪一條軸,在此容易引起混亂,還需數形結合逐步理解透徹。

焦點:當焦點在x軸上時焦點座標f1(-c,0)f2(c,0)

當焦點在y軸上時焦點座標f1(0,-c)f2(0,c)

已知橢圓C x2 b2 1 ab0 的右焦點

y 復2 4x c 4 4 1 f 1,0 a 制2 b 2 c 2 1 b 2 a 2 1 圓方bai程 x 2 y 2 a 2 圓心 0,0 到直線dux y 2 2 0的距離 zhid a 0 0 2 2 a a 2 2 a 2 8 b 2 8 1 7 橢圓dao方程 x 2 8 y 2 7 ...

已知橢圓C x 2 b 2 1 a b 0 的左 右焦點分別為FF2,離心

c a bai2 b du2 c a 6 3 c 6 3a 6 3a a zhi2 b 2 6 9a 2 a 2 b 2 6a 2 9a 2 9b 2 3a 2 9b 2 a 2 3b 2 c x 2 3b 2 y 2 b 2 1y xx 2 3b 2 x 2 b 2 1x 2 3x 2 3b 2 ...

已知橢圓C x2 b2 1 ab0 的離心率為3 2,橢圓上點P到橢圓兩焦點的距離之和為

1 x a y b 1 a b 0 橢圓上點p到橢圓兩焦點的距離之和為4 所以2a 4 a 2離心率為 3 2 那麼e c a c 2 3 2 所以c 3 所以b a c 2 3 1所以橢圓c的方程是x 4 y 1 2 圓經過點 0,1 2,0 設圓心為 x,y 那麼半徑是r x y 1 x 2 y...