1樓:匿名使用者
||向量和向量間的運算有兩種:點乘和叉乘。
點乘「·」計算得到的結果是一個標量;
版a·b=|a||b|cosw(a、b上有向權量標,不便打出。w為兩向量角度)。
叉乘「×」得到的結果是一個垂直於原向量構成平面的向量。
a×b=|a||b|sinw
可以參考一下《高等數學》,一般的工科大學都要學這個!!
2樓:匿名使用者
向量a,b的向量積(叉乘)是向量c那麼c的模|c|=|a||b|*sin也就是c的大小等於以a,b為邊的平行四邊行面積,方向是垂直於a,b所在的平面…
3樓:禰景明勇璧
向量-
點積-叉積-
三維運動
這本來是mit的物理課。專從第20分鐘開始是向量屬叉乘的方法。
4樓:段幹曦之犁長
兩個向量的叉乘等於向量絕對值的乘積再乘sin夾角。
5樓:司徒心宜董浩
向量抄積,也被稱為叉襲積(即交叉乘積)、外積,bai是一種在向du量空間中向量的二元zhi運算。與點積不同,它dao的運算結果是一個偽向量而不是一個標量。並且兩個向量的叉積與這兩個向量都垂直。
「正確」的向量由向量空間的方向確定,即按照給定直角座標系(i,j,k)的左右手定則。若
(i,j,
k)滿足右手定則,則
(a,b,
a×b)也滿足右手定則;或者兩者同時滿足左手定則。
一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。由於向量的叉積由座標系確定,所以其結果被稱為偽向量。
二維向量叉乘公式
6樓:jr冰菱
二維向量叉乘公式a(x1,y1),b(x2,y2),則a×b=(x1y2-x2y1),不需要證明的就是定義的運算。
三維叉乘是行列式運算,也是叉積的定義,你把第三維看做0代入就行了。
二維向量幾何意義及其運用
叉積的長度|a×b|可以解釋成這兩個叉乘向量a,b共起點時,所構成平行四邊形的面積。據此有:混合積[abc]=(a×b)·c可以得到以a,b,c為稜的平行六面體的體積。 [1]
代數規則
1、反交換律:a×b=-b×a
2、加法的分配律:a×(b+c)=a×b+a×c。
3、與標量乘法相容:(ra)×b=a×(rb)=r(a×b)。
4、不滿足結合律,但滿足雅可比恆等式:a×(b×c)+b×(c×a)+c×(a×b)=0。
5、分配律,線性性和雅可比恆等式別表明:具有向量加法和叉積的r3構成了一個李代數。
6、兩個非零向量a和b平行,當且僅當a×b=0。
7樓:陳考研
這個沒什麼好證明的,就是定義的運算。
三維叉乘是那個行列式形式,你把第三維看做0代入就行了
向量叉乘公式是什麼啊
8樓:人偶祭祀
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為向量a×向量b= -向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
9樓:匿名使用者
||向量叉乘「×」得到的結果是一個垂直於原向量構成平面的向量。
a×b=|a||b|sinw
向量和向量間的乘運算有兩種:點乘和叉乘。
點乘「·」計算得到的結果是一個標量;
a·b=|a||b|cosw(a、b上有向量標,不便打出。w為兩向量角度)。
叉乘「×」得到的結果是一個垂直於原向量構成平面的向量。
a×b=|a||b|sinw
10樓:匿名使用者
叉積代表兩個向量的角度差大小及減小角度差的旋轉軸,物理中有旋度的概念與之對應。點積代表兩個向量互相投影的長度。
11樓:沙灘男孩
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
12樓:匿名使用者
向量a*向量b=|a|*|b|*sin《向量a,向量b>
向量的叉乘公式是什麼?
13樓:啦啦啦隊長
向量積,也被稱為叉積(即交叉乘積)、外積,是一種在向量空間中向量的二元運算。與點積不同,它的運算結果是一個偽向量而不是一個標量。並且兩個向量的叉積與這兩個向量都垂直。
「正確」的向量由向量空間的方向確定,即按照給定直角座標系(i, j, k)的左右手定則。若 (i, j, k)滿足右手定則,則 (a, b, a×b)也滿足右手定則;或者兩者同時滿足左手定則。
一個簡單的確定滿足「右手定則」的結果向量的方向的方法是這樣的:若座標系是滿足右手定則的,當右手的四指從a以不超過180度的轉角轉向b時,豎起的大拇指指向是c的方向。由於向量的叉積由座標系確定,所以其結果被稱為偽向量。
14樓:人偶祭祀
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為向量a×向量b= -向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則 向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
三個向量的叉乘公式是什麼樣的?
15樓:墨汁諾
a叉乘b再叉乘c等於=a點乘c再點乘b減去b點乘c在點乘a.空間解析幾何中的公式,用座標表示式可以證明。
a1b2c3+b1c2a3+c1a2b3-a1c2b3-b1a2c3-c1b2a3
a×(b×c)=b(a·c)-c(a·b),套入公式,所以r×(ω×r)=ωr^2-r(ω·r)
拉格朗日公式:a × (b × c) = b(a·c)− c(a·b)
二重向量叉乘化簡公式及證明,可以簡單地記成「bac-cab」。這個公式在物理上簡化向量運算非常有效。需要注意的是,這個公式對微分運算元不成立。
這裡給出一個和梯度相關的一個情形;這是一個霍奇拉普拉斯運算元的霍奇分解的特殊情形。
16樓:笪淑敏習媚
叉乘一個向量就是這個運算元跟向量結合時要按向量的叉乘法則結合,而點乘就像是求內積那樣做.
舉個例子:向量f=pi+qj+rk,其中pqr是數值函式,ijk是單位方向向量.則倒三角運算元叉乘=下面的行列式:ij
kd/dx
d/dy
d/dzpq
r上面行列式中的求導應該是偏微分,這裡不會打.
而倒三解運算元點乘f等於
dp/dx+dq/dx+dr/dz
17樓:匿名使用者
a叉b叉c得到的向量是a和b的線性相合,在ab的平面裡。
18樓:匿名使用者
(axb)xc=(c●a)b-c●(axb)
19樓:匿名使用者
不一定沒意義,如果這三個向量在同一個平面,那他們互相叉乘就有意義,得到得最後這個向量是和這三向量所在的面垂直的向量。
一般叉乘之對兩個向量而言的,方向是垂直於這兩個向量所在的面的向量,三個向量的話不一定存在。
20樓:匿名使用者
沒有意義 只有兩個向量叉乘 我學高等數學
向量叉乘如何計算
21樓:萊晶霞舒翼
||叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此向量的外積不遵守乘法交換率,因為向量a×向量b=-向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),則向量a×向量b=|i
jk||a1
b1c1|
|a2b2
c2|=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
22樓:匿名使用者
會用行列式嗎?如果不會,
給你一個公式:
設a=(x1,y1,z1),b=(x2,y2,z2),a×b=(y1z2-y2z1,z1x2-z2x1,x1y2-x2y1)
(1,2,3)×(4,5,6)=(12-15,12-6,5-8)=(-3,6,-3)
23樓:彌蒼宗政欣躍
a=(a1,b1,c1)
b=(a2,b2,c2)
向量a×向量b=|i
jk||a1b1
c1||a2
b2c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
24樓:印罡春元槐
a×b=(a2b3-a3b2)i+(a3b1-a1b3)j+(a1b2-a2b1)k
25樓:道曉龐微月
2個3維向量叉乘出來的結果是一個2維向量,大學數學裡面是應用行列式值來計算的,電腦不好打,看看高等數學課本就明白了,謝謝
向量叉乘公式是什麼?
26樓:癮獵
叉乘,也叫向量的外積、向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。
|向量c|=|向量a×向量b|=|a||b|sin
向量c的方向與a,b所在的平面垂直,且方向要用「右手法則」判斷(用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向)。
因此 向量的外積不遵守乘法交換率,因為向量a×向量b= -
向量b×向量a
在物理學中,已知力與力臂求力矩,就是向量的外積,即叉乘。
將向量用座標表示(三維向量),
若向量a=(a1,b1,c1),向量b=(a2,b2,c2),
則 向量a×向量b=
| i j k |
|a1 b1 c1|
|a2 b2 c2|
=(b1c2-b2c1,c1a2-a1c2,a1b2-a2b1)
(i、j、k分別為空間中相互垂直的三條座標軸的單位向量)。
數學中,既有大小又有方向且遵循平行四邊形法則的量叫做向量(vector)。
向量向量
有方向與大小,分為自由向量與固定向量。
數學中,把只有大小但沒有方向的量叫做數量,物理中稱為標量。例如距離、質量、密度、溫度等。
("a1"的"1"為a的下標,"ai"的"i"為a的下標,其他類推)
在程式語言中,也存在向量。向量有起點,有方向。常用一個帶箭頭的線段表示。
向量叉乘的意義,向量的點乘叉乘有什麼意義
叉乘,也叫向量的外積 向量積。顧名思義,求下來的結果是一個向量,記這個向量為c。向量c 向量a 向量b a b sin向量c的方向與a,b所在的平面垂直,且方向要用 右手法則 判斷 用右手的四指先表示向量a的方向,然後手指朝著手心的方向擺動到向量b的方向,大拇指所指的方向就是向量c的方向 因此 向量...
如果a向量點乘b向量0,a向量叉乘c向量等於0,為什麼b點乘c向量不一定等於
若a是 零向量 則條件能成立,但b點乘c不一定等於零。就像 0 3 0 0 4 0,但 3 4 0是 一樣 的道理。a向量叉乘b向量 點乘c向量為什麼等於 b向量叉乘c向量 a向量點乘 混合積具有輪換對稱性 a,b,c b,c,a c,a,b a,c,b c,b,a b,a,c a向量叉乘以a向量為...
兩個關於向量的向量積叉乘的問題。是關於叉乘為什麼被
我了個去,這些東西課本上肯定會有的。第一個問題 叉乘用途比較廣泛了,比如說角加速度方向的求法,電磁感應裡的右手定則 高中學的都已經忘光了。自己去翻翻書吧 再比如力矩的求法等等。第二個問題 你是數學系的嗎,如果不是的話你真沒必要知道它是怎麼推導的,因為這玩意你用不著而且也記不下來。這裡給你提供一個思路...